4. Find all two-variable polynomials p(x, y) with real coefficients such that p(x + y, x - y) = 2p(x, y) for all real numbers x and y.

Solution by Arkady Alt, San Jose, CA, USA.

Note that p(2x,2y)=p((x+y)+(x-y),(x+y)-(x-y))=2p(x+y,x-y)=4p(x,y). Excluding the trivial case $p(x,y)\equiv 0$ we assume further that $p(x,y)\neq 0$.

Since $p(0,0)=p(2\cdot 0,2\cdot 0)=4p(0,0)$ then p(0,0)=0 and p(x,y) is not constant, moreover p(x,0) and p(0,y) are not constants. Note that any such two-variable polynomial p(x,y) can be represented in the form p(x,y)=A(x)+B(y)+xyC(x,y), where $\deg A(x)=n>0, \deg B(y)=m>0$, more precisely $A(x)=p(x,0)=a_nx^n+a_{n-1}x^{n-2}+\ldots+a_1x,\ B(y)=p(0,y)=b_mx^m+b_{m-1}x^{m-1}+\ldots+b_1x$, where $a_n\neq 0,b_m\neq 0$.

Since p(2x,2y)=4p(x,y) then in particular for y=0 and any real x we have p(2x,0)=4p(x,0) if and only if $2^na_n=4a_n, 2^{n-1}a_{n-1}=4a_{n-1},\ldots,2a_1=4a_1$ if and only if $n=2,k_1=0$, Similarly we obtain $m=2,b_1=0$.

Thus, $p(x,y) = ax^2 + xyC(x,y) + by^2$. Since $p(x,x) = x^2(a+b+C(x,x))$ and p(2x,2x) = 4p(x,x) then for $x \neq 0$ we have $4x^2(a+b+C(2x,2x)) = 4x^2(a+b+C(x,x))$ if and only if C(2x,2x) = C(x,x) if and only if C(x,x) is constant.

Indeed, since $C(x,x) = c + c_1 x^2 + \dots + c_k x^{2k}$ then C(2x,2x) = C(x,x) if and only if $c_i = 2^{2i}c_i$, $i = 1,2,\dots,k$ if and only if $c_i = 0$, $i = 1,2,\dots,k$. So, $p(x,y) = ax^2 + cxy + by^2$ and since p(x+y,x-y) = 2p(x,y) if and only if $a(x+y)^2 + c(x^2-y^2) + b(x-y)^2 = 2ax^2 + 2cxy + 2by^2$ if and only if $(b+c-a)x^2 + (a-b-c)y^2 + 2(a-c-b)xy = 0$ for any x,y then c = a-b.

Therefore, $p(x,y)=ax^2+(a-b)xy+by^2$ and all such two-variable polynomials p(x,y) of the second degree satisfy p(x+y,x-y)=2p(x,y).

Indeed,
$$p(x+y,x-y)=ax^2+2axy+ay^2+bx^2-2bxy+by^2+(b-a)(x^2-y^2)=2(ax^2+(a-b)xy+by^2)=2p(x,y).$$

5. Let ω_1 and ω_2 be two circles such that the centre of ω_1 is located on ω_2 . If the circles intersect at M and N, AB is an arbitrary diameter of ω_1 , and A_1 and B_1 are the second intersections of AM and BN with the circle ω_2 (respectively), prove that A_1B_1 is equal to the radius of ω_1 .

Solution by Michel Bataille, Rouen, France.

The following lemma will be used twice: Let C and C' be two circles intersecting at U, V. If points P, Q on C and P', Q' on C' are such that P, U, P' and Q, V, Q' are collinear, then PQ and P'Q' are parallel.

